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The Split-Symbol Moments Estimator (SSME) is an algorithm that is designed

to estimate symbol signal-to-noise ratio (SNR) in the presence of additive white

Gaussian noise (AWGN). This article examines the performance of the SSME al-

gorithm in band-limited channels and quantifies the effects of the resulting inter-

symbol interference (ISI). All results obtained herein are in closed form and can

be easily evaluated numerically for performance prediction purposes. Furthermore,

they are validated through digital simulations.

I. Introduction

The Deep Space Network Baseband Assembly (BBA)

and Advanced Receiver (ARX) use a Split-Symbol Mo-
ments Estimator (SSME) algorithm to estimate the sym-

bol signal-to-noise ratio (SNR) of the received signal. The

algorithm was designed to operate in the presence of ad-

ditive white Gaussian noise (AWGN) and at data rates

low enough so that bandwidth limiting is insignificant. Its

principle of operation relies on using the outputs of two ac-

cumulators each operating on a separate half of the same

symbol. The product of the outputs provides, after av-

eraging, an estimate of the signal power. An estimate of

total power is obtained by summing both accumulations,

thus integrating over the full symbol period, squaring the

sum, and then averaging to obtain an estimate of signal

mean-square plus noise variance. By processing both these
averages, an estimate of the symbol SNR can be easily
derived.

This article examines the performance of the SSME

when the data stream is filtered and inter-symbol interfer-

ence (ISI) results. This is a likely scenario in the ARX II

(current version of ARX) which has a 20-MHz processing
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rate and a data rate goal of 6.6 Msymbols/sec. The ratio of

the bandwidth W to the highest data rate (Rh) expected is

W]Rh = 1.33 assuming an 8.8-MHz 3-dB telemetry band-

width. Analysis and simulations are used simultaneously

to quantify the performance of the SSME in band-limited

channels. Throughout this article, perfect carrier, subcar-

rier, and symbol synchronization are assumed, since the

purpose of the analysis is to quantify the effects of filter-

ing only.

r(t) = + n(t) (I)

where S is the data power and d(t) denotes the actual data
given by

oo

d(t)= _ d.p(t - nT)
n_OQ

(2)

II. The Split-Symbol Moments
Estimator (SSME)

The input to the SSME consists of a sequence of sam-

pies obtained by processing the received signal. The pro-

cessing can be broken into two stages: analog and digital.

In the ARX II, for instance, the received signal is first

downconverted to an intermediate frequency and filtered

using analog circuits. This is followed by an analog-to-

digital converter after which the carrier, subcarrier, and
symbol synchronization are performed digitally. It is as-

sumed that the synchronization function is performed in

an ideal fashion and is thus ignored in this article. Figure 1

depicts a basic model for the telemetry signal processing

up to the SSME input. The analog filtering function is

lumped into a single equivalent filter H(s) and the dig-

ital processing is represented by the filter H(z). Given

symbol timing, the SSME estimates the symbol signal-to-

noise ratio, which is then used to assess the performance

of the overall receiver. Quantifying the performance of

the SSME, especially at high data rates, enables the user
to determine the source of erroneous SNR measurements.

These erroneous measurements may be attributed to the
fundamental limitations of the SNR estimator or to the

various tracking loops not being in-lock. This is particu-

larly important for monitoring the symbol synchronization

loop, as the only indication of its proper or improper oper-

ation is provided by the estimates of symbol SNR available

from the SSME. In order to simplify the problem, it is as-

sumed that the digital filter H(z) is dominating and the
effects of the analog filter are ignored. This is not the case

in the ARX II, as both filters contribute equally. However,

dealing with one filter will provide some insight into the

behavior of the SSME in the presence of ISI.

A. Signal Model

Assuming that the carrier and subcarrier synchroniza-

tion have been performed ideally, the baseband signal r(t)
can be modeled as

where p(t) is the baseband pulse limited to T sec (data

rate R = 1/T) and dn denotes the binary symbols +1. The

additive noise n(t) is zero-mean white Gaussian noise with

two-sided power spectral density (PSD) No�2 watts/nz.

The continuous signal r(t) is then sampled once every T_

seconds (sampling rate fs = 1/Ts) to produce the sequence

rij, as shown in Fig. 2. Consequently, the samples rij are
given by

_j = v/_d,j + n,j (3)

where dij takes on the value +1 with equal likelihood and

nij is a sequence of independent identically distributed
zero mean Gaussian random variables with variance

No/2Ts. The double subscript ij denotes the ith sample

of the jth symbol. In this case the digital samples rij are

then filtered by a general filter H(z) to produce the string

of samples Yij, which form the input to the SSME. The

digital filter H(z) can be either a FIR or an IIR filter. In

either case, the analysis to follow is applicable. Assume an

integer number N_ of samples per symbol. This is a valid

assumption when the sampling clock is controlled by the
symbol synchronization loop to produce an even number

of samples per symbol as in ARX I, (the previous version

of the advanced receiver) [4]. However, in ARX II this is

not the scenario, as the sampling clock is free running and

is not synchronized with the symbol rate. As a result, the

number of samples per symbol can change and hence, is

not fixed. It is not the goal of this article to investigate

the effects of noninteger samples per symbol on the per-

formance of the SSME. Thus, only the integer number of

samples per symbol case is considered. In writing Eq. (3),
it is further assumed that the pulse p(t) is an NRZ or a

Manchester pulse. In either case, dij remains constant (1

or -1) for N_ or N_/2 samples. By including an additional
weighting factor, more general pulse shapes can also be ac-

commodated. Note however that when the baseband pulse

p(t) contains nonzero rise or fall times due to analog fil-

tering, the sampling offset (defined as the distance in time

between the start of the pulse and the time at which the
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first sampleis taken)becomesanadditionalvariableand
shouldbeconsideredin aperformancepredictionanalysis.

B. The SSME Structure

In this section, the SSME is introduced and discussed

briefly. Key performance parameters are also defined to
evaluate the SSME performance in the presence of ISI. To

the authors' knowledge, the SSME was first suggested by

L. Howard [1] and later analyzed in white Gaussian noise

by Simon and Mileant [2].

The SSME structure is depicted in Fig. 3. The up-

per "arm" sums the input samples Yij over the first half

of a symbol to produce Yaj, and the lower "arm" sums

the input samples over the second half of a symbol to pro-

duce Y/3j. Subsequently, Yaj and YZj are first summed and
squared to produce Xssj, an estimate of total power, and

secondly multiplied to yield Xpj, an estimate proportional

to signal power. Next, Xssj and Xpj are averaged over n

symbols to obtain better estimates, namely, ross and rap.

Finally, mp is appropriately weighted and subtracted from
ms, to obtain an estimate of noise power. This is then

used with the signal power estimate to obtain an estimate

of the symbol signal-to-noise ratio.

In order to evaluate the performance of the SSME,

the SNR should be defined at various points in the system

(see Fig. 2), in particular, the symbol SNR before the filter
and the symbol SNR at the output of the filter which forms

the input to the SSME. Obviously, it is expected that the
SNR estimates of the SSME will coincide with the symbol

SNR of the filtered signal, as the latter constitutes the

input to the SSME. As the data rate is increased and the
number of samples per symbol is reduced (assuming an

approximately fixed sampling clock), it is expected that

the SSME estimates will diverge from the symbol SNR;

i.e., there is a data rate threshold above which the SSME
breaks down.

The symbol SNR most commonly used in telecommu-

nications is defined as the ratio of symbol energy Es to the

one-sided PSD level No, i.e., SNR = Es/No. For rectan-

gular symbols, Es = ST. This can also be expressed in
terms of the symbol noise variance as SNR = S/2a_where

2 No/2T. In terms of Fig. 2, this is the symbol SNRO"n

at the input to the filter. The symbol SNR at the output
of the sum- and-dump filter, denoted by SNR' (' denotes

filtered), can be approximated by

S'
SNR' _ "'5- (4)

20"n_

where S' and o'_, denote the average signal power and the
noise variance at the output of the sum-and-dump filter,

respectively. Equation (4) is an approximation because it

does not include the "self noise" due to ISI (denoted a_sl)

from adjacent symbols. An exact definition of SNR' would

include a_s I in the denominator of Eq. (4). However, in

the case of low SNR, a2 is much larger than a2Isl, and
the latter can be ignored. On the other hand, at high

SNR, a2si dominates and Eq. (4) is invalid. In DSN ap-
plications, the signal is typically dominated by noise and

not by ISI, hence, Eq. (4) is valid. Also note that the

sum-and-dump filter is not a "true" matched filter. As a

result, SNR' is not optimized. It is shown in Section I of

the Appendix that SNR' as approximated in Eq. (4) can

be expressed as

S E hp(i+kNs)
k=-eo \ i=0

SNR' = Ns -1Ns -1 (5)

2 _ _ R.,(i-m)
i=0 m=0

where hp(i), i = 0, 1,..., is the pulse response of the digital
filter and Rn,(k) is the autocorrelation function of the fil-

tered noise n'(m), defined by R_,(k) _ E[n'(m)n'(m+k)].

The indices of hp( ) and R,_( ) correspond to sampling
invervals. The double summation in the denominator ac-

counts for the correlation between the ith noise sample and

the mth noise sample of the same symbol. The summation
over k in the numerator incorporates the contribution of

ISI from all symbols. Strictly speaking, this sum is infinite
for an IIR filter and finite for an FIR filter. In either case,

the sum can be truncated to include only those symbols

whose ISI contribution is significant. In the absence of fil-

tering, h(0) = 1 and h(i) = 0 for i _ 0. Consequently,
the autocorrelation Rn,(k) = (No/2T,)[6(k) * h(k) * h(k)]

simplifies to (No/2Ts)6(k) and Eq. (5) reduces to ST/No,

as expected.

C. The Performance of the SSME Algorithm

In this section, the performance of the SSME is evalu-

ated in the presence of ISI. All results derived herein reduce

to their counterpart for a wideband channel as in [2]. The

input samples to the SSME are given by

oo

m------oo

dj_,nhp(i + ruNs) + n_j (6)
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where n_j are the filtered noise samples. We chose to rep-

resent Yij in terms of the pulse response hp(n) to save the

additional summation present when written in terms of the

impulse response h(n). In any case, hp(n) is related to the

impulse response h(n) via

Ns - 1

h,(.) = h(.-m) (7)
m=0

From Fig. 2, the input samples Yij are summed over

the first half of a symbol to form the random variable Yaj;

samples in the second half form Y#j, i.e.,

(Ns/2)-I

Y-i= (8a)
i=0

Note that ross and mp change at one nth of the data rate

and n is a design parameter. Finally, an SNR estimate,

SNR*, is obtained by scaling and combining mp and ms,
as follows:

SNR* - mp (11)
2(¼,..- mp)

Equation (11) describes the SSME SNR estimator which

has been designed to operate in a wideband channel. De-

pending on its performance in the presence of ISI, modi-

fications might be required to adopt the estimator for use
in band-limited channels.

The mean and variance of SNR* have been derived

in [2] and are repeated below for convenience,

N$ - I

= Z (8b)
i=Ns/2

As discussed earlier, we form from the half-symbol accu-

mulators the product and the sum squared of the outputs

to get

(9a)

Xpj = Y_j • Y,_j (9b)

where

E[SNR*] = SN""-R + _1 (1 + 2S-_R) (12)
n

Var[SNR*] = 1 (1 + 4S"_R + 2S"_R 2) (13)
n

SN"'_R & E[rnp] (14)
2 [¼E[mss]- E[mp]]

These variables are the estimates of total power and signal

power on a per symbol basis. To improve these estimates,

we average over n symbols and obtain

1 ft

ross = n _.= Xssj (10a)

n

= n (10b)rnp

j=l

Equations (12) through (14) have been computed in the

presence of AWGN and assume no ISI. Furthermore, they

are approximate expressions which are valid for large n.

Improved approximations could be obtained by retaining

higher-order terms of the expansion as discussed in [3]. In

the presence of filtering, these equations are not valid in

the strict sense but can still serve as a guide, the quality

of which is assessed via computer simulations at a later

point. They are expected to be "good" approximations

because we are operating in a noise-dominant rather than

ISI-dominant scenario. It is shown in the Appendix that

[(NI/___0 ) - 1 Ns -- 1
E[mp] = S h,(i + ruNs). E hp(k + raN,)

m=--co k=Ns]2

(Ns/2)-I Ns-1

+ i_o E Rn,(i- k)
"= k=Ns/2

(15a)
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and

rN0_ 1 ] 2 No-1 Ns-1

which gives

oo [(No/2)-I N.-I "] Vv,/2)-1_v,-1

.... L ,=o k=N,/2 j ,=o k=N,12

(16)

All these equations reduce to their respective counter-

parts in a wideband channel as in [2]. Namely, E[mp] =

N_S/4, E[m,,] --" N_S + N, No/2T, and SNR = ST/No.
Since the estimate SNR* itself is a random variable, a

measure of its quality is its signal-to-noise ratio given by

where

(N0/2)-I N0-1

A0= _ _ R.,(i- k) (19a)
i:0 k=No [2

E 2 [SNR °]

SNR(SNR*) - Vat [SNR*]
(17a)

No-1 No-1

Bo = E E Rn,(i- k)
i=0 k=0

(10b)

Using the approximations for E[SNR*] (Eq. 12), and

Var[SNR*] (Eq. 13), one obtains Aoo=S E hp(i+mNo)

( )]'[S"N-R + 1_ 2SN"R + 1
SNR(SNR*) "-" n

(1+ 4sW-R+ 2s_-R2) (17b)

Note that in either limit, as SNR approaches 0 or c_, one

has

SN"RL = AL L = 0, oo (18)
2(¼BL-A_)

and

"1

No -- 1 /

× _ h,(k+ raN,)J
k=Na]2

Boo = S E hp(i + mN,)
rn=-oo L i=0

lim SNR(SNR*)
SNR--*L

(19c)

2

(19d)
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A

is given by Eq. (17b) with SNR replaced by its respec-

tive limit. In the absence of filtering, A0 = 0, B0 =

(iV, No/2T,), A_ = (N,/2) 2 and Boo = N_, which simpli-

fies to

1
lim SNR(SNR*)=- (20a)

SNR---*O n

lim SNR(SNR*) __ n
SNR--* oo 2 + 2 (20b)

in agreement with [2]. Equations (18) and (19) depend

on the filterH(z) and cannot, in general, be simplified any

further. Intuitively, however, SNR(SNR*) is expected to

improve with n for high SNR even in the presence of ISI.

III. Numerical Results and Discussion

As mentioned earlier, the performance of the SSME

needs to be assessed in the presence of ISI for various data

rates. The digital filter used in the simulations is the half-

band filter described in [5] with transfer function H(z)

given by

H(z) = - 0.017 + 0.038z -2 - 0.089z -4

+ 0.312z -6 + 0.5z -7 + 0.312z -8

- 0.089z -x° + 0.038z -1_ - 0.017z -14 (21)

and plotted in Fig. 4 versus normalized frequency. Note

that the ratio of 3-dB bandwidth to sampling frequency is

about 0.23. Assuming an effective sampling rate of 20 MHz

(actual sampling rate is 40 MHz but telemetry process-

ing at the output of the half-band filter is performed at

20 MHz due to decimation by two), the number of sam-

ples per symbol is given by Ns = fsT. Thus, defining N8 is

equivalent to specifying the data rate (for a fixed sampling

rate). To get a feeling of the filtering involved, Fig. 5 de-

picts the pulse response and Fig. 6 shows a typical filtered

sequence for Na = 2, 4, 10 in the absence of noise. Note

from Fig. 5 that a filtered pulse experiences interference

from both past and future symbols due to the inherent

filter delay.

The performance of the SSME in the presence of fil-

tering is depicted in Fig. 8 versus the number of samples

per symbol N0. The figure shows analysis and simulation

results for input SNRs of -5, 0, and 5 dB. As 5/8 de-

creases, the data rate increases and more ISI results. As

N8 decreases below 6, SNR* diverges from SNR' and the

SSME breaks down. Surprisingly, the estimated SNR*

are several decibels higher than SNR' in the breakdown

region. However, it is unclear whether the divergence of
the estimates is due to the ISI or colored noise. In order

to gain more insight into the causes, the effects of ISI and

colored noise are considered separately. Figures 10 and 12

depict the SSME response when the data or the noise are

filtered, but not both. When the data is filtered (Fig. 10),

the estimated SNR, denoted by SNR*d, is still valid even

for N, < 6. In this special scenario, Eqs. (5) and (16)

reduce to give

SNR_ =

S _ hp(i+ kN,)
k=-oo \ i=0

2 2
2N; a,

(22a)

and

A

SNRa =

S Z hp(i+mN_) Z hp(k+mN,)
m=-oo k=No/2

(22b)

[1 ( =_oo rN$_ 1 ]2) ((N$_-12 S n - ._=__
hp(i + raN,) )](k+ raN,)

k=ns]2
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The subscript d is to indicate that only the data is filtered.

Both equations are shown in Fig. 10 along with simulation

points. As Ns decreases, SNR_ and SNR* d decrease be-

cause more signal energy is lost due to filtering. Also note

that at N8 = 2, SNR* and SNR' coincide better at low

SNR and they diverge for high SNR. The curvature of the

graph in Fig. 10 is opposite to that of Fig 8. That tends

to indicate that ISI itself is not the reason why SNR* of

Fig. 8 increases for low /Vs. This phenomenon is better

explained by Fig. 12, which depicts the SSME response in

the presence of correlated noise, but unfiltered data. In

that case, Eqs. (5) and (16) simplify to

SNR_ =
SN

Ns-1 Ns-1

2 R..,(i-.,)
i=O m=O

(23a)

A

SNRn =

SN2 (N,/2)-t N_-I

i=O k=Ns/2

)Su, + R.,(i- 4
i=0 k=O

Ns/2 Ns-1 ]
i=0 k=Ns/2

(23b)

where the subscript n indicates that only noise is filtered.

For Ns < 6, the SSME seems to break down due to noise

correlation. Recall that the SSME estimates noise power

by subtracting signal power estimate from total power esti-

mate. The signal power estimate X_,j (see Fig. 3) is formed

by the product of the accumulator outputs. In the absence

of filtering, that product contains independent noise sam-

ples whose effect is reduced by averaging over n symbols.

In the presence of filtering and specifically for low Na, the

noise samples in that product are highly correlated and

contribute to the signal power estimate even after averag-

ing. That in turn reduces the noise power estimate after

subtracting from the estimate of total power, hence signif-

icantly increasing SNR*. Obviously, the noise correlation

also increases the total power estimate but that increase is

still less than its counterpart in estimating signal power,

taking into account the appropriate weighting. In Figs. 13

and 14, SNR* is plotted versus SNR (Fig. 13) and SNR _

(Fig. 14) for a fixed N, when both the data and noise are

filtered. As expected, a linear relationship is obtained for

large values of Ns and a nonlinear relationship as the data

rate increases.

Finally, as an indication of the quality of the esti-

mates, Figs 15 and 16 depict SNR(SNR*) versus SNR for

a fixed N8 (Fig.15) and fixed n (Fig. 16). As more symbols

are used to provide an SNR estimate, an improved perfor-

mance is expected and this is clearly shown in Fig. 15.

From Fig. 16, it is also clear that SNR(SNR*) improves

with decreasing Ns. This is a rather surprising result at

first glance. But remember that SNR(SNR*) is an indica-

tion of how the estimate jitters about its mean, no matter

where the mean is. Also recall that for Na = 4 the defi-

nition of SNR in Eq. (4) is invalid as the variance due to

ISI might be significant. The simulations were conducted

using 25,000 symbols for N, _> 10 and 50,000 symbols for

N, < 10, with varying n depending on the SNR.

IV. Conclusion

This article deals with the performance of the SSME

in the presence of ISI, evaluated both analytically and by

simulation. It is shown that the estimator performs well

with more than 6 samples per symbol, but poorly with

fewer than 6 samples per symbol due to the high corre-

lation among noise samples of the same symbol. Further

work would be required to reduce the bias in the estimates

that occur with few samples per symbol.
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Appendix

Derivation of Equations

I. Derivation of Equation (5)

The approximate symbol signal-to-noise ratio at the

output of the digital filter, SNR', is given by

of the digital filter.

Clearly then,

Let s_j be the signal portion of Yij.

S!

SNR'- 20.2n, (A-I)

where S' and 0"2, denote the average signal power and the

noise variance respectively at the output of the sum-and-

dump filter. We begin our derivation of the signal power in

the filtered symbol with an expression for the ith sample

of the jth filtered symbol, Yij. Namely,

Yij = vfS[djhv(i) + dj-lhv(i + Na)

+dj_2hp(i + 2Na)] +.-. + n_j

i=O,1,2,...,Ns-1

oo

dj_mhp(i + mN,) i=0,1,2,...,N,-1

(A-3)

and the signal power, S', is

(A-4)

where E[ ] is the expected value operator to average over

the random data. Substituting Eq. (A-3) into Eq. (A-4)

yields

m (3o

dj-mhp(i + mNs) + n_j

i=0, 1, 2, ..., N,- 1 (A-2)
S' = E _ _ m dj-mhp(i + raN,)

where dj is the jth received symbol, hn(i ) is the pulse

response at time i, and n_j is the noise sample at the output

Separating the above equation into four sums and moving

the expected value operator inside the summations yields:

Na-1 Ns-1

s'=sEE
i=0 l=O

E E E[dj_mdj_n]hp(i+mNj)hp(,+nNj)=S E [(i_=o hp(i+nNa
flr_ --l -- O0 n _ l O0 n -_ -- O0

(A-5)
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wherethe last step follows since E[dj-ndj-m] = _i(n - m)

for all j. Using Eq. (7), S _ can be expressed in terms of

the impulse response as

s' =s,,_ _ h(_+,.V,-m) (A-6)
=- L\i=° ,.=o

Substituting for Yij from Eq. (A-2) in Eq. (h-9) gives

[ N,-,/ o_ )]2= Y:( Z
L i=O \m=--oo

(A-IO)

The filtered noise variance an, , on a per symbol basis, is

defined as the expected value of the squared sum of N_

noise samples, i.e.,

a_, = E n;j = Rn,(i- t) (A-7)

L\ i=o i=o t=o

where R_,(m) is the autocorrelation function of the filtered

noise samples. Using Eqs. (A-a)and (A-7) in Eq. (A-l),

S Z hp(i+ nNe

SNR' n=-_ \ i=o (A-8)
-- Na-I Na-I

i=0 t=O

II. The Expected Value of X u, Xp, ms,,

and mp

As indicated in Fig. 3, the random variable X,,j is

the squared sum of Nj input samples. Hence, the expected

value of Xa,j is

1E [X,j] = E Yij

Lx i=o

(A-9)

Carrying out the square in the above equation, moving

the expectation operator through the summations, and

noting the following: E[aj_maj_t] = 6(m - t) for all j,
I !

E[aj_mn_j] = 0 for any i, j, and m, and E[nijnkj ] =

P_,(i - k) for all j, the desired result is obtained, namely,

(E[X,,j] = S _ hp i + mN,

m=-¢o L i=O

Nj-I Nj-I

+ E E P_,(i-k) (A-11)
i=0 k=O

Note that E[X, oj] is independent of j and henceforth the

subscript j can be dropped from E[Xj_j] and the expected

value of X,,j can be denoted by X,. As shown in Fig. 3,

the random variable Xpj is the product of the sum of sam-

plea from the first half of a symbol with the sum of samples

from the second half of a symbol. Consequently, the ex-

pected value of Xpj is given as

E[Xnj ] = E YiJ E Ykj]
L _=o k=N,l= j

(A-12)

Substituting for YO from Eq. (A-2),

)]E[Xpj] = E dj_mh v (i + raN,) + n_j dj_th v (k + iN,) + n_j

L i=0 m=-oo k=No/2 t=-oo
(A-13)

172



Expanding the product in the equation above and taking

the expectation of the received data symbols, filtered noise,

as well as the product of data and noise yields the desired
result:

E[Xpi ] = Srn _
=- L i=o

Na-I q (Na/2)- I N,-1

hp(i + mN.) _ h(k + mN.)J + i_ °
k=Ns/2 "= k=Na/2

Rn,(i- k) (A-14)

Note that E[Xpj] is independent of j and henceforth

the subscript j can be dropped from E[._Xpj] and the ex-

pected value of Xpj can be denoted by Xp. The random
variables m,, and mp are formed by scaling and summing

the random variables X, aj and Xpj over n symbols. Con-

sequently, the expected values of rnaa and mp are the ex-
pected values of these scaled sums. But, since E[Xs,j] and

E[Xpj] are constant from symbol to symbol (i.e., indepen-

dent of j),

and

E[m,,,] = X,, (A-15a)

E[mp] = _ (A-15b)

173


